您现在的位置: 首页>>师资队伍>>荣退教师>>正文

张广

 

职称:教授

学位:博士

研究方向:微分方程与动力系统,非线性泛函分析

一、 发表的科学研究论文:

[156] J. J. Li, J. L. Wu andG. Zhang, Estimation of intrinsic growth factors in a class of stochastic population model, Stochastic Analysis and Applications, 2019, DOI: 10.1080/07362994.2019.1605908

[155] L. L. Meng, Y. T. Han, Z. Y. Lv andG. Zhang,Bifurcation, Chaos, and Pattern Formation for the Discrete Predator-Prey Reaction-Diffusion Model, Discrete Dynamics in Nature and Society 2019:1-9, DOI: 10.1155/2019/9592878

[154] X. F. Li, S. W. Ma andG. Zhang, Existence and qualitative properties of solutions for Choquard equations with a local term,Nonlinear Analysis: Real World Applications,45(2019), 1-25.

[153]张广,张敏,宋冰洁.动态价格下Logistic生长模型的捕获问题[J].经济数学,2018,4(35):39-44.

[152]张敏,张广.动态价格下Gompertz系统的捕捞问题[J].应用数学进展,2018,7(7):776-781.

[151] L. Xu, S. S. Lou, P. Q. Xu andG. Zhang, Feedback Control and Parameter Invasion for a Discrete Competitive Lotka–Volterra System, Discrete Dynamics in Nature and Society, Volume 2018, Article ID 7473208, 8 pages, https://doi.org/10.1155/2018/7473208.

[150] L. Xu, J. Y. Liu andG. Zhang, Pattern formation and parameter inversion for a discrete Lotka–Volterra cooperative system, Chaos, Solitons & Fractals, 110(2018), 226-231.

[149] J. M. Guo, S. W. Ma andG. Zhang, Solutions of the autonomous Kirchhoff type equations in RN, Applied Mathematics Letters 82 (2018), 14–17.

[148] L. L. Meng, X. F. Li andG. Zhang, Simple diffusion can support the pitchfork, the flip bifurcations, and the chaos, Communications in Nonlinear Science and Numerical Simulation,Commun Nonlinear Sci Numer Simulat 53 (2017) 202–212.

[147] S. L. Sun, Y. R. Sun,G. Zhangand X. Z. Liu, Dynamical behavior of a stochastic two-species Monod competition chemostat model, Appl. Math. Comput., 298(2017), 153-170.

[146] Y. Q. Du, W. Feng, Y. Wang andG. Zhang, Positive solutions for a nonlinear algebraic system with nonnegative coefficient matrix, Applied Mathematics Letters 64 (2017) 150–155.

[145] Xu L,Zhang G, Cui H (2016) Dependence of Initial Value on Pattern Formation for a Logistic Coupled Map Lattice. PLoS ONE 11(7): e0158591. doi:10.1371/journal.pone.0158591.

[144] Y. Q. Du,G. Zhangand W. Y. Feng, Existence of positive solutions for a class of nonlinear algebraic systems, Mathematical Problems in Engineering, Mathematical Problems in Engineering, Volume 2016, Article ID 6120169, 7 pages, http://dx.doi.org/10.1155/2016/6120169

[143] X. F. Li andG. Zhang,Positive Solutions of a General Discrete Dirichlet Boundary Value Problem, Discrete Dynamics in Nature and Society,Volume 2016, Article ID 7456937, 7 pages,

http://dx.doi.org/10.1155/2016/7456937

[142] M. F. Li,G. Zhang, Z. Y. Lu and L. Zhang, Diffusion-driven instatiblity and patterns of Leslie-Gover competition model, Journal of Biological Systems, Vol. 23, No. 3 (2015) 385–399

[141] X. F. Li andG. Zhang, Existence of time homoclinic solutions for a class of discrete wave

equations,Advance in Difference Equations,(2015) 2015:358 DOI 10.1186/s13662-015-0696-z, 1-15.

[140] W. Feng andG. Zhang, New fixed point theorems on order intervals and their applications,Fixed Point Theory and Applications, (2015) 2015:218 DOI 10.1186/s13663-015-0467-2, 1-10.

[139]G. Zhang, W. Feng and Y. B. Yang, Existence of time periodic solutions for a class of non-resonant discrete wave equations, Advance in Difference Equations,(2015) 2015:120, 1-13, DOI 10.1186/s13662-015-0457-z.

[138]G. Zhangand S. Ge, Existence of positive solutions for a class of discrete Dirichlet boundary value problems, Applied Mathematics Letters, 48 (2015) 1-7.

[137] X. F. Li,G. Zhangand Y. Wang, Existence and uniqueness of positive solitons for a second order difference equation, Discrete Dynamics in Nature and Society, Volume 2014, Article ID 503496, 8 pages, http://dx.doi.org/10.1155/2014/503496.

[136] Li Xu, Lianjun Zou, Zhongxiang Chang, Shanshan Lou, Xiangwei Peng, Guang Zhang,Bifurcation in a Discrete Competition System, Discrete Dynamics in Nature and Society, 2014, Article ID 193143, 7 pages.

[135] Li Li,Guang Zhang, Gui-Quan Sun and Zhi-Jun Wang, Existence of periodic positive solutions for a competitive system with two parameters, Journal of Difference Equations and Applications, 20(3)(2014), 341-353.

[134]胡杨林,张广,一个反应扩散流行病模型的复杂动力学,科技信息,2013-01-15,199.

[133]胡杨林,张广,具有时滞的空间SIR传染病模型的动力学分析,科技信息,2013-03-15,157,

[132]L. Meng,G. Zhang,S. Xiao and J. Bao,Turing instability for a two dimensional semi-discrete Gray-Scott system, Wseas Transactions on Mathematics, 12(2)(2013), 221-229.

[131]W. Feng andG. Zhang, Eigenvalue and Spectral Intervals for a Nonlinear Algebraic System,Linear Algebra and Its Applications, 439 (2013) 1-20.

[130] L. Xu, L. J. Zhao, Z. X. Chang, J. T. Feng andG. Zhang, Turing instability in a semi-discrete Brusslator model, Modern Physics Letters B, 27(1)(2013), 1350006-1-9.

[129]Meifeng Li, Bo Han, Li Xu,Guang Zhang, Spiral patterns near Turing instability in a discrete reaction diffusion system, Chaos, Solitons & Fractals 49 (2013) 1–6.

[128] Defu Li,G. Zhang, Influence of time delay and diffusion on SIR epidemic model with bilinear incidence rate. Internationnal Journal of Information and Systems Sciences,8(4)(2012), 525–532.

[127]李得福,张广.带扩散的捕食者食饵系统平衡点的稳定性分析.科技信息,2013,(06)124.

[126] Lu Zhang,G. Zhangand Wenying Feng, Turing instability generated fromdiscretediffusion-migeration systems,Canadian Applied Mathematics Quarterly, 20(2), Summer 2012, 253-269.

[125]F. X. Mai, L. J. Qin andG. Zhang, Turing instability for a semi-discrete Gierer-Meinhardt system, Physica A, 391(2012), 2014-2022.

[124] M. F. Li,G. Zhang, H. F. Li and J. L. Wang, Periodic travelling wave solutions for a coupled map lattice, Wseas Transactions on Mathematics, 11(1)(2012), 64-73.

[123]L. Xu,G. Zhangand J. F. Ren, Turing instability for a two dimensional semi-discrete Oregonator model, Wseas Transactions on Mathematics, 10(6)(2011), 201-209.

[122] Y. T. Han, B. Han, L. Zhang, Li Xu, M. F. Li andG. Zhang, Turing Instability and Wave Patterns for a Symmetric Discrete Competitive Lotka-Volterra System,Wseas Transactions on Mathematics, 10(5)(2011), 181-189.

[121] 李莉,张广,靳祯,离散捕食系统正周期解的存在性,中北大学学报(自然科学版),31(2010)95-99.

[120]王玲,赵中建,张广,一类多时滞有捕获的Leslie-Gower型捕食系统的Hopf分支,华北水利水电学院学报,31(2)(2010)

[119]L. Xu,G. Zhang, B. Han, L. Zhang, M.F. Li, Y.T. Han,Turing instability for a two-dimensional Logistic coupled map lattice, Physics Letters A 374 (2010) 3447–3450.

[118]常佳佳,张广,具有捕食者相互残杀项时滞系统的Hopf分支,数学实践与认识,39(12)(2009), 97-102.

[117]白亮,张广,离散热传导方程文稳态解的存在性,青岛理工大学学报,30(3)(2009),

[116]G. Zhangand J. R. Yan, Solutions On An Impulsive Compartmental System, Dynamics of Continuous, Discrete and Impulsive Systems, Series A, 16(2009), 725-735.

[115] G. Q. Sun,G. Zhang, Z. Jin and L. Li,Predator cannibalism can give rise to regular spatial pattern in a predator-prey system, Nonlinear Dynamics, 58(1-2)(2009), 75-84.

[114]G. Zhang, L. Bai, Existence of solutions for a nonlinear algebraic system,Discrete Dynamics in Nature and Society,Volume 2009, Article ID 785068, 28 pages.

[113] X. L. Liu andG. Zhang, Positive and Sign-changing Solutions for Fourth-order BVPs with Parameters,J. Appl. Math. Computing, 31(2009), 177-192.

[112] G. Q. Sun,G. Zhangand Z. Jin,Dynamic behavior of a discrete modified Ricker & Beverton_Holt model, Computers and Mathematics with Applications, 57(8)(2009), 1400-1412.

[111] L. Bai andG. Zhang, Existence of Nontrivial Solutions for A Nonlinear Discrete Elliptic Equation with Periodic Boundary Conditions, Applied Mathematics and Computation, 210(2009), 321-333.

[110]袁虎廷,王权,张广,关于带周期系数的Bernoulli方程及其较好的离散模型,山西大同大学学报,24(4)(2008)

[109]张广,时宝,三类非线性代数方程系统解的存在性,海军航空工程学院学报, 233(3)(2008), 55-357.

[108]G. Zhangand S. S. Cheng,Nota sobre un sistema compartimentado con retrasos,La Gacetade la RSME, Vol. 11 (2008), Núm. 4, Págs. 687–692.

[107]G. Zhang, Y. L. Luo and L. Bai, Existence and stability of non-zero steady state solution pairs for discrete neutral networks,ICNC-FSKD2008, Jinan, Shandong, China, Edited by Maozu Guo, Liang Zhao and Lipo Wang, Fourth International Conference on Natural Computation, Vol. 3, 185-189.

[106] W. Han andG. Zhang, Twin positive solutions of a nonlinear m-point boundary value problem for third-order p-Laplacian dynamic equation on time scales.Discrete Dynamics in Nature and Society,Volume 2008 (2008), Article ID 257680, 1-19.

[105]G. Zhangand Z. L. Yang, Positive Solutions of A General Discrete Boundary Value Problem, J. Math. Anal. Appl., 339(2008), 469-481.

[104]G. Zhangand S. Stevic, On the difference equation,J. Appl. Math. Computing, 25(1-2)(2007), 269-282.

[103]W. Y. Feng,G. Zhangand Yikang Chai, Existence of positive solutions for secord order differential equations arising from chemical reactor theory, Discrete and Continuous Dynamical Systems, Supplement 2007, 373-381.

[102]G. Zhang, D. M. Jiang and S. S. Cheng, 3-Periodic Traveling Wave Solutions for a Dynamical Coupled Map Lattice, Nonlinear Dynamics, 50(1-2)(2007), 235-247(SCI,IDSNumber:203YP).

[101] B. B. Du andG. Zhang, Classification and Existence of Non-oscillatory Solutions for Two-Dimensional Neutral Difference System, Proceedings of the SNPD-2007, 8thACIS International Conference on Saftware Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing, Edited by Wenying Feng and Geng Gao, Volume III, July 30-August 1, 2007, Haier International Training Center, Qingdao, China, pp. 567-572.

[100]G. Zhangand B. Shi, Clever Uses of Matrices for Neutral Delay Difference Systems, Proceedings of the SNPD-2007, 8thACIS International Conference on Saftware Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing, Edited by Wenying Feng and Geng Gao, Volume I, July 30-August 1, 2007, Haier International Training Center, Qingdao, China, pp. 417-421.

[99] Huting Yuan,Guang Zhangand Hongliang Zhao, Existence of Positive Solutions for a Discrete Three-Point Boundary Value Problem,Discrete Dynamics in Nature and Society,Volume 2007 (2007), Article ID 49293, 1-14.

[98] Limei Zhou, Yue Wu, Liwei Zhang andGuang Zhang, Convergence Analysis of a Differential Equation Approach for Solving Nonlinear Programming Problems, Applied Mathematics and Computation, 184(2)(2007), 789-797.

[97]G. Zhangand W. Feng, On the Number of Positive Solutions of A Nonlinear Algebriac System, Linear Algebra and Its Applications, 422(2-3)(2007), 4040-421.

[96]G. Zhang, Existence of non-zero solutions for a nonlinear system with a parameter, Nonlinear Analysis TMA,66(6)(2007), 1410-1416.

[95]H. H. Bin, L. H. Huang andG. Zhang, Convergence and Periodicity of Solutions for a Class of Difference Systems,Advances in Difference Equations, 2006/70461(2006), 1-10.

[94] S. G. Kang,G. Zhangand B. Shi, Existence of three periodic positive solutions for a class of integral equations with parameters, J. Math. Anal. Appl., 323(1)(2006), 654-665.

[93]G. Zhang, Existence of Nontrivial Solutions for Discrete Elliptic Boundary Value Problems, Numerical Methods for Partial Differential Equations, 22(6)(2006), 1479-1488.

[92]张广,一类代数方程系统解的存在性,青岛理工大学学报, 27(5)(2006), 1-7.

[91] J. L. Wang andG. Zhang, Asymptotic weighted periodicity for delay differential equations, Dynamic Systems and Applications, 15(2006), 479-500.

[90] R. Medina andG. Zhang, Oscillation of A Class of Partial Difference Equations with Oscillatory Coefficients, Far East Math. & Math. Sci., 23(2)(2006), 157-169.

[89] Y. M. Wang andG. Zhang, Existence of nontrivial anti-periodic solutions for nonlinear second order difference equations, Far East J. Math. Sci., 32(2)(2006), 145-155.

[88] M. Migda andG. Zhang, On unstable neutral difference equations with “maxima”, Math. Slovaca, 56(3)(2006),

[87]G. Zhangand S. S. Cheng, Existence of solutions for a nonlinear system with a parameter, J. Math. Anal. Appl., 314(1)(2006), 311-319.

[86]G. Zhang, S. G. Kang and S. S. Cheng, Periodic solutions for a couple pair of delay difference equations, Advances in Difference Equations, 3(2005), 215-226.

[85]G. Zhangand L. J. Zhang, Periodicity and Attractivity of A Nonlinear Higher Order Difference Equation, Appl. Math. Comput., 126(2)(2005), 395-401.

[84] H. L. Zhao,G. Zhangand S. S. Cheng, Exact Traveling Wave Solutions for Discrete Conservation Laws, Portugaliae Mathematica, 62(1)(2005), 89-108.

[83] S. G. Kang andG. Zhang, Existence of Nontrivial Periodic Solutions for First-Order Functional Differential Equations, Applied Mathematics Letters, 18(1)(2005), 101-107.

[82]G. Zhangand S. S. Cheng, On two second order half-linear difference equations, Fasciculi Mathematici (Poland), 35(2005), 163-175.

[81]G. Zhangand M. Migda, Unstable neutral differential equations involving the maximum function, Glasnik Mathematiki (Poland), 40(60)(2005), 249-259.

[80] L. J. Zhang,G. Zhangand H. Liu, Periodicity and attractivity of a nonlinear higher order difference equation, Applied Mathematics & Computing, 19(1-2)(2005), 191-201.

[79]G. Zhangand J. R. Yan, Existence and Nonexistence of Eventually Positive Solutions for Nonlinear Neutral Differential Equations, Appl. Math. Comput.,156(3)(2004), 653-664.

[78]G. Zhangand M. Migda, Monotone Solutions of a Higher-Order Neutral Differential Equation, Commentationes Mathematicae, XLIV(1)(2004), 147-162.

[77] M. Migda andG. Zhang, Monotone solutions of neutral difference equations of odd order, J. Difference Equations & Applications, 10(7)(2004), 691-703.

[76]G. Zhangand Z. L. Yang, Existence of $2^{n}$ Nontrivial Solutions for Discrete Two-Point Boundary Value Problems, Nonlinear Analysis TMA, 59(7)(2004), 1181-1187.

[75] X. L. Liu,G. Zhangand S. S. Cheng, Existence of Three Positive Periodic Solutions for Non-Autonomous Functional Differential Equations, Abstract Anal. Appl., 9(10)(2004), 897-905.

[74]G. Zhangand S. S. Cheng, Positive Periodic Solutions of Coupled Delay Differential Systems depending on Two Parameters, Taiwanese Math. J., 8(4)(2004), 639-652.

[73]G. Zhangand R. Medina, Three-point boundary value problems for difference equations, Computers & Mathematics with Applications, 48(12)(2004), 1791-1799.

[72] M. I. Gil, S. G. Kang andG. Zhang, Positive periodic solutions of abstract difference equations, Applied Math. E-Notes, 4(2004), 54-58.

[71]高英,张广,葛渭高,时滞差分方程周期正解的存在性,系统科学与数学,33(2)(2003), 155-162.

[70] Y. Gao andG. Zhang, Eventually positive solutions for neutral△-differential equations, Far East J. Math. Sciences, 8(2)(2003), 121-130.

[69] S. G. Kang andG. Zhang, Existence of positive periodic solutions for a class of integral equations , Far East J. Math. Sciences, 9(2)(2003), 121-128.

[68]G. Zhangand S. S. Cheng, Positive periodic solutions for discrete population models, Nonlinear Funct. Anal. & Appl., 8(3)(2003), 335-344

[67] S. G. Kang,G. Zhangand S. S. Cheng, Periodic Solutions of a Class of Integral Equations, Topological Methods in Nonlinear Analysis, 22(2)(2003), 245-252.

[66]G. Zhangand S. S. Cheng, Eventually positive solutions of nonlinear neutral difference equations, Intern. Math. Journal, 2(2)(2002), 265-278.

[65]G. Zhang, Oscillation for nonlinear neutral difference equations, Applied Math. E-Notes, 2(2002), 22-24.

[64] Y. P. Guo, Y. Gao andG. Zhang, Existence of positive solutions for singular second order boundary value problems, Applied Math. N-Notes, 2(2002), 125-131.

[63]G. Zhangand S. S. Cheng, Positive periodic solutions of non-autonomous functional differential equations depending on a parameter, Abstract Anal. Appl., 7(5)(2002), 279-286.

[62]张广,陈慧琴,含最大中立型差分方程非振动解的渐近性,雁北师范学院学报,18(2002),1-6.

[61]G. Zhang, Bifurcation and periodic positive solutions of nonautonomous functional differential systems, Research Report, AMSS-V-2001-061.

[60]G. Zhang, Bifurcation for delay difference equations, Research Report, AMSS-V-062.

[59] S. S. Cheng andG. Zhang, Existence of positive periodic solutions for non-autonomous functional differential equations, Electronic J. Diff. Eqs., Vol. 2001(2001), No. 59, 1-8.

[58] Y. Gao andG. Zhang, Oscillation of first order neutral difference equation, Applied Math. E-Notes, 1(2001), 5-10.

[57] S. S. Cheng, Y. Z. Lin andG. Zhang, Traveling waves of a discrete conservation law, PanAmer. Math. J., 11(1)(2001), 45-52.

[56] B. G. Zhang andG. Zhang, Nonoscillations of second order neutral differential equations of maxima, Communication in Applied Analysis, 4(1)(2000), 31-38.

[55] L. Q. Mao andG. Zhang, Nonoscillation criteria of nonlinear second order differential equations, Proceedings of International Conference Advanced Problems in Vibration Theory and Applications, June 19-22, 2000, Xi’an, China, Edited by: J. H. Zhang and X. N. Zhang, 531-534.

[54] S. S. Cheng andG. Zhang, “Virus” in several discrete oscillation theorems, Appl. Math. Lett., 13(2000), 9-13.

[53]G. Zhangand H. Q. Chen, Nonexistence and existence criteria of eventually positive solutions for a class of nonlinear neutral difference equations, Nonlinear Sdudies, 7(2)(2000), 251-258.

[52] S. S. Cheng andG. Zhang, Existence criteria for positive solutions of a nonlinear difference equality, Ann. Polonici Math., LXXIII3(2000), 197-220.

[51]G. Zhang, Eventually positive solutions of odd order neutral differential equations, Appl. Math. Lett., 13(2000), 55-61.

[50] R. Y. He andG. Zhang, The dual characteristics of LK-UR and K-SS space, Far East J. Math., 2(5)(2000), 731-737.

[49] S. S. Cheng andG. Zhang, Positive periodic solutions of a discrete population model, Functional Differential Equations, 7(3-4)(2000), 223-230.

[48]张广,高英,高阶非线性差分方程的正解,系统科学与数学,19(2)(1999), 157-161.

[47]张广,高阶中立型微分方程的周期解,数学研究与评论,19(增)(1999), 287-290.

[46]米芳,高英,张广,中立型时滞微分方程最终正解的存在性和不存在性,雁北师院学报,15(3)(1999), 5-8.

[45]G. Zhang, W. T. Li and S. S. Cheng, Necessary and sufficient conditions for oscillation of delay difference equations with continuous arguments, Far East J. Math. & Sciences, 7(4)(1999), 643-648.

[44]G. Zhangand S. S. Cheng, Asymptotic dichotomy for nonoscillatory solutions of a nonlinear difference equation, Appl. Math., 25(4)(1999), 393-399.

[43] W. T. Li, S. S. Cheng andG. Zhang, A classification scheme for nonoscillatory solutions of a higher order neutral nonlinear difference equation, J. Austral. Math. Soc., (Series A) 66(1999), 1-12.

[42] B. G. Zhang andG. Zhang, Qualitative properties of functional differential equations with “Maxima”, Rocky Mountain Math. J., 29(1)(1999), 357-367.

[41] S. S. Cheng,G. Zhangand M. Dehghan, Growth conditions for a two level disrete heat equation, Proceedings of the Seventh Workshop on Differential Equations and its Applications, National Chung-Hsing University, Taiwan, 1999, 56-62.

[40]G. Zhangand S. S. Cheng, On connected half-linear differential equations, Demonstratio Mathematica, 32(2)(1999), 345-354.

[39]G. Zhangand S. S. Cheng, Note on a discrete Emden-Fowler equation, PanAmerican J. Math. 9(3)(1999), 57-64.

[38] S. S. Cheng,G. Zhangand S. T. Liu, Stability of oscillatory solutions of difference equations with delays, Taiwanese J. Math., 3(4)(1999), 503-515.

[37] S. S. Cheng, S. T. Liu andG. Zhang, A multivariate oscillation theorem, Fasciculi Math., 30(1999), 15-22.

[36] S. S. Cheng,G. Zhangand W. T. Li, On a higher order neutral difference equation, Mathematical Analysis and Applications (ed. Th. M. Rassias), Hadronic Press, Inc., Palm Harbor, Florida, 1999, pp. 37-64.

[35]G. Zhangand S. S. Cheng, A necessary and sufficient oscillation condition for the discrete Euler equation, PanAmerican J. Math., 9(4)(1999), 29-34.

[34]G. Zhangand S. S. Cheng, Asymptotic stability of nonoscillatory solutions of nonlinear neutral differential equations involving the maximum function, International J. Applied Math., 1(7)(1999), 771-779.

[33]G. Zhang, S. S. Cheng and Y. Gao, Classification schemes for positive solutions of a second order nonlinear difference equation, J. Comp. Appl. Math., 101(1999), 39-51.

[32] S. S. Cheng andG. Zhang, Monotone solutions of a higher order neutral difference equation, Georgian Math. J., 5(1998), 49-54.

[31]G. Zhang, Nonexistence of positive solutions of partial difference equation with continuons arguments, Far East J. Math. Sciences, 6(1)(1998), 89-92.

[30]高英、张广,一类非线性中立型微分方程的振动性,山西省数学会1998年学术年会论文集,山西教育出版社,1998,pp41-44。

[29] B. G. Zhang andG. Zhang, Oscillation of nonlinear difference equations of neutral type, Dynamic Systems and Applications, 7(1)(1998), 85-92.

[28]高英,张广,二阶中立型差分方程非振动解的渐近性,微分方程理论和应用,南海出版公司,1998,pp21-25

[27]高英,张广,二阶中立型时滞微分方程非振动解的渐近性,华北工学院,19(2)(1998), 108-111.

[26]G. Zhangand S. S. Cheng, Elementary oscillation criteria for a three term recurrence with oscillatroy coefficient sequence , Tamkang J. Math., 29(3)(1998), 227-232.

[25]张广,一类泛函微分方程和差分方程的振动性,大同高专学报,12(3)(1998),97-100.

[24]张广,高英,中立型时滞微分方程最终正解的存在性和不存在性,非线性动力学学报,5(增下)(1998),334-335.

[23]张广,一个猜想的证明,华北高等职业教育, 11(6)(1998), 17.

[22]G. Zhangand S. S. Cheng, Positive solutions of a nonlinear neutral difference equation, Nonlinear Anal.-TMA, 28(4)(1997), 729-738.SCI收录)(EI收录)

[21]张广,明亚东,具偏差变元非线性双曲方程的强迫振动,山西大学学报,20(1)(1997), 28-31.

[20]高英,张广,具有正负系数中立型时滞微分方程的振动性,工程数学学报,14(4)(1997), 8-12.

[19]G. Zhangand S. S. Cheng, Note on a functional equation related to the Emden-Fowler equation, Functional Differential Equations, 4(1-2)(1997), 215-221.

[18] S. L. Xie,G. Zhangand S. S. Cheng. Nonexistence of positive solutions of neutral difference equations, Diff. Eq. & Dynamic Systems, 5(1)(1997), 1-11.

[17]G. Zhangand S. S. Cheng, Elementary nonexistence criteria for a recurrence relation, Chinese J. Math., 24(3)(1996), 229-235.

[16]高英,张广,一类非线性中立型微分方程振动的充分必要条件,山西师大学报,10(2)(1996), 16-19.

[15] W. T. Li andG. Zhang, Oscillation in nonlinear second order differential equations involving integral avereges, J. Gansu Sciences, 8(2)(1996), 21-25.

[14]张广,高英,非线性二阶差分方程的渐近分类,全国常微分方程稳定性会议(大连海事出版社),大连,1996, pp360-362.

[13]张广,明亚东,关于振动定理的一点注记,华北高等职业教育, 2(1995

[12]G. Zhangand S. S. Cheng, Oscillation criteria for a neutral difference equation with delay, Appl. Math. Lett., 8(3)(1995), 13-17.

[11] S. S. Cheng andG. Zhang, Nonexistence criteria for positive solutions of a nonlinear recurrence relation, Mathl. Comput. Modelling, 22(2)(1995), 59-66.

[10] S, S. Cheng andG. Zhang, Forced oscillation of a nonlinear recurrence relation,现代数学与力学(MMM-VI),苏州, 1995.11, 673-676.

[9]张广,王幼斌,具“积分小”系数一阶中立型微分方程的振动性,太原重型机械学院, 4(1995), 366-368.

[8]张广,一类非线性摄动微分方程的振荡定理,山西经济管理学院学报,1995(增), 67-70.

[7]张广,高阶非线性泛函微分方程的振动性,大同高专学报, 3(1994), 76-77.

[6]张广,一类非线性摄动微分方程的振荡定理,云中大学学报,14(2)(1993), 90-95.

[5]张广,高阶非线性中立型多滞量泛函微分方程的振动性,云中大学学报,14(3)(1993), 55-59.

[4]张广,关于振动定理的一点注记,雁北师院学报,2(1993), 28-29.

[3]张广,某类非线性摄动微分方程的振荡定理,山西师大学报,7(1)(1993), 13-18.

[2]张广,一类非线性摄动微分方程的振荡定理,云中大学学报,13(1992),76-79.

[1]张广,一类非线性微分方程的振荡定理,华北高等职业教育,19(1992), 53-55.

二、发表的教学研究论文:

[20] Y. Q. Du,G. Zhangand W. Y. Feng, Existence of positive solutions for a class of nonlinear algebraic systems, Mathematical Problems in Engineering, Mathematical Problems in Engineering, Volume 2016, Article ID 6120169, 7 pages, http://dx.doi.org/10.1155/2016/6120169

[19] X. F. Li andG. Zhang,Positive Solutions of a General Discrete Dirichlet Boundary Value Problem, Discrete Dynamics in Nature and Society,Volume 2016, Article ID 7456937, 7 pages,

http://dx.doi.org/10.1155/2016/7456937

[18]G. Zhang, W. Feng and Y. B. Yang, Existence of time periodic solutions for a class of non-resonant discrete wave equations, Advance in Difference Equations,(2015) 2015:120, 1-13, DOI 10.1186/s13662-015-0457-z.

[17]G. Zhangand S. Ge, Existence of positive solutions for a class of discrete Dirichlet boundary value problems, Applied Mathematics Letters, 48 (2015) 1-7.

[16] X. F. Li,G. Zhangand Y. Wang, Existence and uniqueness of positive solitons for a second order difference equation, Discrete Dynamics in Nature and Society, Volume 2014, Article ID 503496, 8 pages, http://dx.doi.org/10.1155/2014/503496.

[15]G. Zhang, L. Bai, Existence of solutions for a nonlinear algebraic system,Discrete Dynamics in Nature and Society,Volume 2009, Article ID 785068, 28 pages.

[14] L. Bai andG. Zhang, Existence of Nontrivial Solutions for A Nonlinear Discrete Elliptic Equation with Periodic Boundary Conditions, Applied Mathematics and Computation, 210(2009), 321-333.

[13]袁虎廷,王权,张广,关于带周期系数的Bernoulli方程及其较好的离散模型,山西大同大学学报,24(4)(2008)

[12]张广,时宝,三类非线性代数方程系统解的存在性,海军航空工程学院学报, 233(3)(2008), 55-357.

[11]G. Zhangand S. Stevic, On the difference equation,J. Appl. Math. Computing, 25(1-2)(2007), 269-282.

[10]G. Zhangand W. Feng, On the Number of Positive Solutions of A Nonlinear Algebriac System, Linear Algebra and Its Applications, 422(2-3)(2007), 4040-421.

[9]G. Zhang, Existence of non-zero solutions for a nonlinear system with a parameter, Nonlinear Analysis TMA,66(6)(2007), 1410-1416.

[8]H. H. Bin, L. H. Huang andG. Zhang, Convergence and Periodicity of Solutions for a Class of Difference Systems,Advances in Difference Equations, 2006/70461(2006), 1-10.

[7]G. Zhang, Existence of Nontrivial Solutions for Discrete Elliptic Boundary Value Problems, Numerical Methods for Partial Differential Equations, 22(6)(2006), 1479-1488.

[6]张广,一类代数方程系统解的存在性,青岛理工大学学报, 27(5)(2006), 1-7.

[5] Y. M. Wang andG. Zhang, Existence of nontrivial anti-periodic solutions for nonlinear second order difference equations, Far East J. Math. Sci., 32(2)(2006), 145-155.

[4] M. Migda andG. Zhang, On unstable neutral difference equations with “maxima”, Math. Slovaca, 56(3)(2006),

[3]G. Zhangand S. S. Cheng, Existence of solutions for a nonlinear system with a parameter, J. Math. Anal. Appl., 314(1)(2006), 311-319.

[2]王维平,张广,剖析一习题所得的几个命题,云中大学学报,13(1992), 88-89.

[1]张广, 的引深,华北高等职业教育,13(1991), 57-58.

三、出版的著作或教材:

[3]张广等,偏差分方程及其应用,科学出版社,北京,2018.

[2]张广、高英,《差分方程的振动理论》,高等教育出版社,2001,12.

[1]张广等,线性代数方法概论,东南大学出版社,1992.

四、主持或参加的科学研究项目:

[4]主持在研,周期边界时空离散反应扩散系统的动力学分析,国家自然科学基金面上项目;课题编号:11371277;申请代码:A010701;资助时限:2014年1月1日—2017年12月31日.

[3]主持“一类控制模型的定性分析”,山西省自然基金资助,课题编号20001001,2001,1-2003,12.

[2]第二参与“一类泛函微分方程的振动理论”,山西省高科技开发项目,课题编号2000138,2002,1-2004,12

[1]主要参与者,“偏差分方程的定性分析”智利国家自然基金国际合作项目,课题负责人Universidad de Los Lagos的R. Medina教授,参与者:郑穗生和张广,资助金额10万US¥,时间:2000-2003

五、主持或参加的教学研究项目:

[1]主持在研,普通高校基础类学科专业人才分类培养的探索与实践----以天津商业大学数学类专业为例,天津商业大学,2015.6-2017.6.

六、获奖情况:

[6]第一完成人“一类控制模型的定性分析”获山西省科技进步二等奖,2003.

[5]第一完成人“一类控制模型的定性分析”获山西省教委科技进步一等奖,2002.

[4]第一完成人“一类差分方程的正解”获山西省优秀论文一等奖,2002.

[3]第二完成人“一类泛函微分方程和差分方程的振动性”获山西省优秀论文三等奖,2002.

[2]第一完成人“一类泛函微分方程和差分方程的振动性”获山西省科技进步三等奖,1999.

[1]第一完成人“一类泛函微分方程和差分方程的振动性”获大同市科技进步一等奖,1998.

七、获得荣誉称号情况:

[6]山西省五一劳动奖章二等奖,1999.

[5]大同市优秀党员,1998.

[4]山西省模范教师,1998.

[3]大同市十大杰出青年提名奖,1997.

[2]大同市青年科技标兵,1995.

[1]大同市教育系统优秀教师,1986.

上一条:李乃华
下一条:姜恩庆

关闭